A Unified Fdtd Approach for Electromag- Netic Analysis of Dispersive Objects

نویسنده

  • Y.-Q. Zhang
چکیده

In order to obtain a unified approach for the FiniteDifference Time-Domain (FDTD) analysis of dispersive media described by a variety of models, the coordinate stretched Maxwell’s curl equation in time domain is firstly deduced. Then the FDTD update formulas combined with the semi-analytical recursive convolution (SARC) in Digital Signal Process (DSP) technique for general dispersive media are obtained. In this method, the flexibility of FDTD in dealing with complicated object is retained; the advantages of absolute stability, high accuracy, less storage and high effectiveness of SARC in treating the linear system problem are introduced, and a more unified update formulation for a variety of dispersion media model including Convolution Perfectly Matched Layers (CPML) absorbing boundary is possessed. Therefore it can be applied to analysis of general dispersive media provided that the poles and corresponding residues in dispersive medium model of interest are given. Finally, three typical kinds of dispersive model, i.e., Debye, Drude and Lorentz medium are tested to demonstrate the feasibility of presented approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-order unified symplectic FDTD scheme for the metamaterials

a r t i c l e i n f o a b s t r a c t Unified symplectic finite-difference time-domain (US-FDTD) Split perfectly matched layers (SPML) Metamaterials (MTMs) A high-order unified symplectic finite-difference time-domain (US-FDTD) method, which is energy conserved, for modeling the metamaterials is proposed. The lossless Drude dispersive model is taken into account in US-FDTD scheme, and the detai...

متن کامل

Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials.

Finite-difference time-domain (FDTD) simulations of any electromagnetic problem require truncation of an often-unbounded physical region by an electromagnetically bounded region by deploying an artificial construct known as the perfectly matched layer (PML). As it is not possible to construct a universal PML that is non-reflective for different materials, PMLs that are tailored to a specific pr...

متن کامل

A Circuit Approach for the Electromag- Netic Analysis of Inhomogeneous Cylindri- Cal Structures

An equivalent circuit, made of the chain connection of a number of T-type two-port networks, is proposed for the very accurate representation of the frequency-domain behavior of radially inhomogeneous solitary cylindrical structures, the individual two-port networks being made of frequency-independent R, L and C lumped elements. The accuracy of the model is dictated by the number of two-port ne...

متن کامل

Tensor Method for Treating the Propagation of Scalar and Electromag- netic Gaussian Schell-Model Beams: A Review

In this paper, we give a review of the tensor method for treating the propagation of scalar and electromagnetic Gaussian Schell-model (GSM) beams. Partially coherent complex curvature tensor is introduced to describe a scalar astigmatic partially coherent GSM beam with twisted phase (i.e., twisted anisotropic GSM beam). A tensor ABCD law for treating the propagation of scalar twisted anisotropi...

متن کامل

Realistic Model of Dispersive Soils Using Plrc-fdtd with Applications to Gpr Systems

Abstract—A realistic model of ground soil is developed for the electromagnetic simulation of Ground Penetrating Radar (GPR) systems. A three dimensional Finite Difference Time Domain (FDTD) algorithm is formulated to model dispersive media using N -term Debye permittivity function with static conductivity. The formulation of the algorithm is based on the concept of the Piecewise Linear Recursiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009